
USING THE WISDOM OF THE CROWD TO FIND VALUE IN A  

FOOTBALL MATCH BETTING MARKET 

 

 

Prelude to the Updated Version 

 

This publication represents an updated version of my ‘Wisdom of the Crowd’ first published on Football-Data in 

August 2015 following its inclusion within my latest book Squares & Sharps, Suckers & Sharks: The Science, 

Psychology & Philosophy of Gambling. In addition to reproducing some of the original material and rationale 

behind this betting system, I have also presented two new interesting models for removing a bookmaker’s margin 

in an attempt to estimate the ‘true’ betting odds for a football match. Furthermore, I have also investigated 

whether some bookmakers’ odds are better suited to carrying out this task than others. Finally, I have updated the 

analyses with the most recent football results and odds data (through to May 2017) and retested the methodology 

for profitability. 

 

 

Introduction 

 

At my local fair recently there was a competition to guess the number of flower petals stuffed into a box. Rather 

than bother to take a close look, I simply asked the stall holder for the list of previous guess. So far there had been 

40 guesses from which I calculated the average: 245. I submitted that figure as my guess. It turned out the correct 

answer was 295, meaning I was out by 17%, not too bad. Additionally, following my attempt there were a further 

13 guesses, a total of 54, with an average of 272, just 8% lower than the correct answer. Seemingly, 54 completely 

unconnected people acting independently of one another collectively produced an answer that was a pretty close 

estimate of the true one. When you consider that the range of guesses was from 53 to 866, perhaps you’ll agree 

that something magical is going on here. Not only was the final average pretty close to the actual number, it was 

also more accurate than the vast majority of individual guesses. That magic is called the ‘Wisdom of the Crowd.’  

 

 

The Weight of an Ox 

 

The wisdom of the crowd phenomenon was first observed in the early 20th century by the eminent anthropologist, 

Sir Francis Galton. At a 1906 country fair in Plymouth, 787 people participated in a contest to estimate the weight 

of butchered ox. Galton calculated that the median guess to be 1207 pounds, a figure accurate to within 1% of the 

true weight of 1198 pounds and again more accurate than the majority of individual estimates. The wisdom of the 

crowd is a very real and repeatedly observable phenomenon in life, not least in the world of betting markets that 

are dominated by player psychology. Remove the influence of the bookmaker’s margin or betting exchange’s 

commission and we find that betting markets actually do a phenomenal job of replicating the ‘true’ probabilities of 

outcomes, despite not knowing a priori what the results of sporting events will be. [The word ‘true’ used in this 

context is placed in inverted commas to denote that we don’t (nor can’t) know the true probability of a result a 

priori, because sports, unlike casino games, are not the product of simple probabilistic functions. Rather, they can 

only be proved empirically a posteriori  by analysing samples of results retrospectively.] This is perhaps best 

observed at betting exchanges. The chart below, based on 52,411 Betfair odds from worldwide football league 

matches during the period 29th October 2004 to 31st October 2005, compares the probabilities implied a priori by 

volume weighted average betting prices with the probabilities calculated a posteriori by the actual results. There is 

an almost perfect correlation (r = 0.995). 
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The Signal & the Noise 

 

What is it about a betting crowd that makes their collective opinion so accurate, where individually so many can 

be inaccurate? Provided individual errors are not systematic and in the same direction they will tend to cancel 

each other out. Each individual guess has two components: signal (information) and noise (error). Remove the 

noise and what’s left behind is the signal, that is to say the collective wisdom. Four conditions are necessary for a 

crowd to be wise in this manner: diversity, independence, decentralisation and aggregation. Arguably they are all 

present in betting markets. 

 

 

Diverse Opinions 

 

Having a diverse set of opinions is a prerequisite for collective wisdom. Where everyone is thinking or doing 

exactly the same thing, the probability of systematic error or bias increases. Diversity is the basis for any 

competitive market; let different ideas or products compete against one another and that’s usually a recipe for the 

best ones succeeding. Google inherently understand the significance of diversity; it invests a lot of time, money 

and effort into lots of little start-up ideas like Google Earth, Google Glass and a driverless car. Not all of them will 

succeed but by having lots of eggs in your basket, you increase the chances that at least some of them hatch. In 

prediction markets like betting, diversity is virtually a given because of the environment of uncertainty and the 

typically large number of people acting in them with difference opinions, risk preferences and approaches to 

forecasting. When attempting to forecast the outcome of a game, for example, there are potentially limitless ways 

to skin that cat. Some prediction methods try to determine the intrinsic probability of outcome (for example value 

betting). Others adopt a more psychological approach, believing a market to be more a reflection of opinions (and 

more importantly opinions about opinions) with all their biases, making use of methods such a technical analysis 

to study trends and directions in betting prices. Then there are different types of prediction models: linear or 

nonlinear, static or dynamic, deterministic, probabilistic, or dynamic. Most will be wrong but the pooling of 

diverse ideas encourages collective accuracy. 
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Independent Thinking 

 

Diversity arises out of independence of thought. Arguably, this is the most important ingredient for crowd 

wisdom. If everyone thinks the same way and does the same thing we frequently end up with poor outcomes. 

Everyone was betting on the 2015 UK General Election to return a hung parliament, because that’s what all the 

polls and pundits were saying was going to happen. Evidently they were all doing the same thing and failing to 

take account of a couple of very important influences: the shy Tory effect and the lazy Labour voter. (Of course, 

it’s easy to say this with hindsight.) A similar thing happened in the 2017 General Election. This time a 

Conservative Majority was predicted but it failed to materialise. Pollsters and pundits collectively underestimated 

the higher turnout amongst younger voters, who predominantly chose to vote with Labour. Perhaps if more polls 

and more pundits had demonstrated a greater independence of thought using what economists call ‘private 

information’, such ideas (and others) could have been used to collectively improve their predictions. Of course 

this isn’t always the case. Teaching people to serve a tennis ball or to do differential calculus requires a narrow 

field of learning through repetition. But such activities are sufficiently predictable with clear relationships between 

cause and effect. In prediction markets under uncertainty, by contrast, learning through pattern recognition is 

limited because the patterns are largely random. What signal exists is deafened by noise, with good and bad luck 

dominating outcomes. In such environments having people acting independently helps to eliminate that noise, 

because it offers the best chance for keeping people’s errors from becoming correlated. When mistakes are 

random they will cancel out. 

 

 

An Invisible Hand 

 

The final two pieces of the jigsaw that make the wisdom of the crowd such a powerful mechanism are 

decentralisation and aggregation. A system is said to be decentralised if it’s not acting under the influence of a 

top-down central authority. By definition, independence and diversity of thought and decision making will be 

encouraged where central regulation is not restricting outputs. Decentralisation ensures that a crowd of self-

interested, independent people working without top-down interference will collectively find a better solution than 

anything else you could come up with. The process happens as if my magic. It’s the mechanism behind bird 

flocking, fish shoaling and insect swarming, the emergence of complex and seemingly coordinated behaviour out 

of a few simple rules followed by the self-interested individuals. In the case of birds there are just four: stay close 

to the middle; keep sufficient distance between neighbours; avoid collisions; and flee predatory attack. For human 

interactions, the 18th century economic Adam Smith labelled this magic the ‘invisible hand,’ describing the 

unintended social benefits resulting from individual actions. 

 

 

Public Property 

 

Decentralisation, however, will only be of benefit if there exists a way of coordinating or aggregating together all 

the information. In a betting market that aggregation process is explicit: the conversion of private information and 

expression of opinions into a piece of public property – the odds. The betting price for a football team publically 

aggregates all the private information that exists. It represents the current balance of opinions about the likelihood 

of a team winning as expressed by the amounts of money wagered for and against it. 

 

 

Market Equilibrium 

 

The magic lies in the emergence of wisdom without individuals having a complete understanding of what the 

market is doing and without anyone knowing what the ‘true’ answer, if there is one, will be. People with only 

partial knowledge and limited calculating abilities actually arrive collectively at the right answer. A wonderful 



demonstration of this magic was accomplished by Nobel Prize-winning economist Vernon Lomax Smith. In 1956 

he set out to determine whether people with limited information would confirm to the hypothesis of market 

clearing, where prices of traded assets adjust up or down such that quantity supplied at the market-clearing price 

equals the quantity demanded at the market-clearing price. Such a price is also called the equilibrium price. 

Giving his 22 students cards with a dollar price tag, he made half of them buyers and half of them sellers. The 

sellers were instructed not to sell at less than this price, whilst the buyers were instructed not to buy at more than 

their card value. A difference achieved between card value and actual contract price could be regarded as profit 

for the player. Strict anonymity was applied such that no one knew the value of anyone else’s card. The students 

were then asked to start trading, calling out bids and offers which may, or may not, be accepted. Sellers and 

buyers were free to accept a bid or offer. If they were refused, further price compromise or bartering would be 

required until they were accepted. The successful trades were recorded publically on the classroom blackboard. 

Economic theory was matched by reality. Traded prices quickly converged on one price, the equilibrium price or 

what we might also call the expectation price, despite players being completely unaware of their competitors’ 

demands and despite none of them preferring this outcome (self-interested traders after all want more profit). 

Collectively the convergence on the market-clearing price yielded the best possible outcome, even if some of the 

players had been blessed with additional knowledge telling them how they should trade. The brilliance of this 

experiment was that it demonstrated that for markets under uncertainty, imperfect people could collectively 

produce near-perfect outcomes. What allowed it to happen was a decentralised independence of action and the 

aggregation of privately anonymous information via the publication of a price. 

 

 

Price Discovery 

 

Essentially, price convergence is exactly what happens at a betting exchange like Betfair. This invisible hand is a 

kind of Bayesian process in which prices are continually and dynamically updated to reflect changes in 

information and opinion, which in turn are reflected in changes in supply and demand. At a betting exchange odds 

move simply in response to supply and demand. The market maker sits completely outside the contest, skimming 

his commission percentage from the action. This process is otherwise known as ‘price discovery’, a mechanism 

for determining the price of an asset in the marketplace through the interactions of buyers and sellers, or in this 

case backers and layers. Remarkable as it may seem, the betting public collectively ‘knows’ the ‘true’ probability 

of outcome of a sporting event through their betting actions. Odds shorten on the fancied competitors and lengthen 

on the least fancied, settling at values that reflect all the private information that has been consumed by the 

players. This price discovery is dynamic with the equilibrium price never completely stationary because there will 

always be new information arriving randomly on to the market. 

 

For a bookmaker, things are a little different but only because they are part of the action; the fundamental process 

remains the same. Odds shorten because too much money has been bet on one outcome, giving the bookmaker a 

large liability in the event that it happens. Bookmakers are always looking to reduce their liability; in this case 

they can achieve this by shortening the odds to discourage further interest from customers. At the same time they 

lengthen the odds on the opposition to attract money. Through this Bayesian price clearing process they attempt to 

balance their book. If they get it right they won’t care which team or player wins, and in effect they become more 

like an exchange. This won’t happen all the time. Sometimes traditional bookmakers choose to take some sort of 

position on an event, either with a view to offering attractive prices better than the rest of the market or because 

they believe the rest of the market and their own customers to be wrong. Despite this, however, as a generalisation 

the punter should understand that, like for an exchange, he is not really betting against the bookmaker at all but 

against his some of his customers who collectively, it might be argued, form a wise crowd. 

 

Knowing that betting odds are often wise can be put to use to make a profit. In the rest of this publication I’ll 

show how this can be achieved specifically for the football home-draw-away match betting market. 

 

 



The Bookmaker’s Margin 

 

The chief difference between a bookmaker and an exchange is the margin. The latter simply applies a commission 

to winning trades, but to all intents and purposes the published prices represent almost ‘true’ probabilities, at least 

collectively across a book of prices for all outcomes. In other words they collectively sum to 100% (or very close 

to it). The former, by contrast, shortens those prices, or rather increases those outcome probabilities. By offering 

odds that are less than fair, the bookmaker aims to build in his profit margin. 

 

The traditional way of measuring the bookmaker’s advantage is by means of the overround, known elsewhere as 

the ‘vig’ (short for Vigorish) or ‘juice’. We can calculate the overround simply by summing the inverse of all the 

betting odds in a book. The simplest of books is one with just two outcomes: either player 1 wins or player 2 wins. 

Suppose Any Murray plays Novak Djokovic in the Wimbledon final, with both players priced at odds of 1.90. The 

inverse of these decimal odds is the implied outcome probability, with the bookmaker’s advantage built in. In this 

case the implied probability for both players will be 1/1.90 = 0.526 or 52.6%. Hence, the overround, V, for this 

betting book will be given by: 

 

𝑉 =
1

1.90
+

1

1.90
= 1.053 

 

Typically, we express the overround as a percentage. To do this we simply multiply the decimal answer by 100%. 

In this case, then, the overround is 105.3%. Logically, the sum of all outcome probabilities in a contest should 

equal 100%, and indeed when the odds are fair this will be true. A sum of probabilities of 105.3% doesn’t really 

make any sense mathematically, but is a reflection of how unfair odds have become, and how much advantage the 

bookmaker has given himself. In this example our bookmaker has built a 5.3% advantage into his prices. 

Overrounds for books with a larger number of outcomes are calculated in exactly the same way. For example, the 

overround for a standard football match bet with home win, draw and away win outcomes will be given by: 

 

𝑉 =
1

𝐻
+

1

𝐷
+

1

𝐴
 

 

where H, D and A are the odds for the home win, draw and away win respectively. Subtracting 1 (or 100%) from 

the answer gives us a measure of the bookmaker’s advantage, what we might call his margin, M. For example, the 

bookmaker Coral had odds for the 2017 Champions League Final between Juventus and Real Madrid of 2.88, 3.00 

and 2.62. Plugging those numbers into the equation above gives V = 1.062 (or 106.2%), hence M = 0.062 (or 

6.2%). 

 

 

Removing the Margin 

 

If we remove the bookmaker’s margin we should theoretically get a rough idea of what the ‘true’ outcome 

probabilities of a match are, assuming the betting odds to be wise. The question is how should the margin be 

removed? That in turn requires an answer to another question: how did the bookmaker apply his margin in the first 

place? The simplest answer is that he applies his margin equally across all outcomes. For example, in Coral’s 

book for the Champions League final, this would mean that the margin of 6.2% was applied equally to home, 

draw and away odds. Consequently, it is then a simple matter of multiplying the published odds by the margin to 

arrive at their implied ‘true’ odds, in this example 3.06, 3.19 and 2.78 respectively. For fairly evenly matched 

outcome probabilities as in this example, this equal margin distribution might very well be a reasonable 

assumption. But does it hold where one team is much more likely to win than the other?  

 

It is now well-established that bookmakers apply differential margin weights to their odds, with greater weights 

the longer the odds. In other words if you purely bet randomly, you will lose less as a percentage betting on 

favourites than you will on longshots. This holds for a variety of sports, including football, tennis, basketball, 



snooker, darts and horse racing. It is called the favourite–longshot bias and arises because punters have a tendency 

to overbet long prices relative to short ones. It remains unclear whether this is because punters choose to behave in 

this manner or whether bookmakers are encouraging them to do so, but explanations for why it happens are 

beyond the scope of this document. For those wishing to learn more about this bias, and others in the world of 

sports betting, I refer you to my latest book: Squares & Sharps, Suckers & Sharks: The Science, Psychology & 

Philosophy of Gambling. Here I will now present three alternative methods for applying a differentially weighted 

margin, and the method for removing it. 

 

 

1) Margin Weights Proportional to the Odds 

 

The first method for applying (and removing) a differentially weighted margin is one that I published in the 

original version of this document (and in my book). It assumes that the margin applied to each outcome is 

proportional to the size of the betting odds (or inversely proportional to the outcome probability). Hence, for a 

book with n runners and overall profit margin M, the specific margin applied to the fair (or ‘true’) odds for the ith 

runner (Oi) will be given by: 

 

𝑀𝑖 =
𝑀𝑂𝑖

𝑛
 

 

For a home-draw-away football match betting market with 3 possible outcomes: 

 

𝑀𝐻 =
𝑀𝐻𝑓

3
 

 

𝑀𝐷 =
𝑀𝐷𝑓

3
 

 

𝑀𝐴 =
𝑀𝐴𝑓

3
 

 

where Hf, Df and Af are the fair home, draw and away odds respectively. 

 

For example, a home-draw-away book with fair odds of 1.5, 5 and 7.5 and a margin (M) of 0.08 or 8%, the 

differential margins for home, draw and away would be 0.04, 0.133 and 0.200 respectively. To calculate the actual 

prices one then simply divides the fair price by the margin weight plus 1. For the home odds, for example, this is 

1.5 ÷ 1.04 = 1.44. Similarly, the draw and away prices are 5 ÷ 1.133 = 4.42 and 7.5 ÷ 1.200 = 6.25. If a margin 

weight of 8% had been applied equally to home, draw and away prices, we would have 1.39, 4.63 and 6.94 

respectively. You can see from this exercise that a differential weighting of odds in this manner shortens longshots 

more significantly than favourites. 

 

With a little bit of algebraic rearranging, we can reverse the process to calculate what fair odds the bookmaker 

will have estimated in the first place, given his book margin and applying this model of differential margin 

weighting. Hence, for any published odds, O, the fair (or ‘true’) odds from which they came will be given by:  

 

𝑂𝑓 =
𝑛𝑂𝑏𝑜𝑜𝑘𝑚𝑎𝑘𝑒𝑟

𝑛 − 𝑀𝑂𝑏𝑜𝑜𝑘𝑚𝑎𝑘𝑒𝑟

 

 

For a 3-outcome market like football match betting this will be: 

 

𝑂𝑓 =
3𝑂

3 − 𝑀𝑂
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So in our example above, a published price of 6.25 will have fair (or ‘true’) odds of (3 x 6.25) ÷ (3 – (0.08 x 

6.25)) = 7.50. I have made available a simple Excel odds calculator which will perform this task. Input the 

bookmaker’s odds and calculator will remove the margins (columns H, I and J – ‘Margin proportional to odds’). 

 

Clearly, as the odds get longer, the differential margin weight that must be applied to them gets larger. Ultimately, 

there will be a limit to how high those published odds will go, determined by the size of the bookmaker’s book 

margin, M. The chart below illustrates the evolution of actual odds that might be offered by bookmakers with 

varying profit margin, M, for a 3-outcome book like home-draw-away. As the fair (or ‘true’) odds increase, so do 

the actual odds offered by a bookmaker but at ever decreasing rates. The theoretical limit to the highest odds a 

bookmaker will offer according to this model will actually be given by 3/M. For example, with a margin of 10% 

or 0.1, the highest odds you would see would be 30; for a margin of 0.05 it would be 60; for a margin of 0.02, 

150; and so on. Evidently less generous bookmakers get close to their limits much more quickly. More 

generically, for a book with n runners, this model would imply maximum odds given by n/M. 

 

 

 

 

2) Using the Odds Ratio 

 

In a blog for Sports Trading Network Keith Cheung describes how something called the Odds Ratio can be used 

to define the distribution of the bookmaker’s margin. As Cheung explains, the odds ratio (OR) measures the 

relative probability of two events and is defined by: 

 

𝑂𝑅(𝑎, 𝑏) =
𝑂𝑎

𝑂𝑏

=
𝑝𝑎(1 − 𝑝𝑏)

𝑝𝑏(1 − 𝑝𝑎)
 

 

where pa and pb are the probabilities of a and b occurring. 

 

An OR(a,b) of 2 implies that outcome a is twice as likely as outcome b. To illustrate the usefulness of the odds 

ratio Cheung considers the following example. 

 

“[W]hile we might instinctively want to say that 60% is twice as likely as 30% (because 60/30 = 2), there 

is no answer to the question of what is twice as likely as 60% using this definition. But using the odds ratio, 

we can say that 75% is twice as likely as 60%, because OR(75%, 60%) = 2.” 
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We can use the odds ratio to apply disproportionate margin weights to odds in a simple 2-outcome book via the 

assumption that the difference between the ‘true’ odds and the bookmaker’s odds is equal for all odds in a book 

when defined by means of the odds ratio. So, again following Cheung, suppose that a ‘true’ outcome probability p 

maps to 𝑥 after application of the bookmaker’s margin. Similarly a ‘true’ probability q maps to y. 

 

Since: 

 

OR(𝑥,p) = OR(y,q) 

 

Therefore: 

 

𝑥(1 − 𝑝)

𝑝(1 − 𝑥)
=

𝑦(1 − 𝑞)

𝑞(1 − 𝑦)
 

 

If we let c equal the odds ratio, rearranging we get: 

 

𝑥 =
𝑐𝑝

1 − 𝑝 + 𝑐𝑝
 

 

and 

 

𝑦 =
𝑐𝑞

1 − 𝑞 + 𝑐𝑞
 

 

 

Since p + q = 1, 

 

𝑦 =
𝑐 − 𝑐𝑝

𝑝 + 𝑐 − 𝑐𝑝
 

 

 

Furthermore, since x + y = M + 1 (or the overround, V) it is possible, although not easy, to solve for c, the odds 

ratio, by means of the quadratic formula and finally obtain the probabilities x and y. Alternatively, it can be 

performed iteratively in Excel by means of either Goal Seek or Solver. 

 

We can also reverse the process to calculate the ‘true’ odds if we already know the odds offered by the 

bookmaker. Now: 

 

𝑝 =
𝑥

𝑐 + 𝑥 − 𝑐𝑥
 

 

and 

 

𝑞 =
𝑦

𝑐 + 𝑦 − 𝑐𝑦
 

 

 

Whilst the process is the same for a 3-outcome book, the mathematics does become even more complicated. 

Because we’ve now introduced a third odds ratio OR(z,r), this time we will need a cubic formula to solve for it. A 

casual look at the formula would be enough to put anyone off trying. Furthermore, some of the solutions to the 

formula can involve complex numbers. Fortunately I managed to find a ready-made Excel worksheet that does the 

https://en.wikipedia.org/wiki/Quadratic_formula
https://math.vanderbilt.edu/schectex/courses/cubic/


job and have adapted it for my own odds calculator. Again, simply input the bookmaker’s odds and the calculator 

will compute the ‘true’ values (columns K, L and M – ‘Odds Ratio’). 

 

Returning to our original fair book with odds 1.5, 5 and 7.5, applying an 8% margin via the odds ratio method 

would result in bookmaker’s odds of 1.43, 4.42 and 6.55 (with the odds ratio equal to 1.17). Compared to my first 

methodology (1.44, 4.42 and 6.25), we can see that the differential margin weight applied to the favourite is 

slightly stronger resulting in slightly shorter odds relatively speaking, whilst the weight applied to the underdog is 

slightly weaker, resulting in relatively longer odds. In other words, the strength of the favourite–longshot bias 

applied to a fair book is slightly weaker for this methodology. 

 

 

3) Using a Logarithmic Function 

 

A third method for applying an overround uses a logarithmic function. Suppose, for a 3-outcome book, we have 

the ‘true’ outcome probabilities p, q and r, which sum to 1. Suppose we also have the bookmaker’s probabilities x, 

y and z, which sum to V = M + 1. According to this methodology, p → x, q → y and r → z in such a way that: 

 

𝑝𝑛 + 𝑞𝑛 + 𝑟𝑛 = 𝑥 + 𝑦 + 𝑧 = 𝑀 + 1 

 

In other words there is a common exponent, n, which will transform the ‘true’ probabilities to the bookmaker’s 

probabilities given his margin M. The bigger the ‘true’ odds the more they will be shortened, in accordance with 

the favourite–longshot bias. n must obviously be < 1 since p < x, q < y and r < z. 

 

Hence:  

 

𝐿𝑜𝑔𝑥𝑝 =  𝐿𝑜𝑔𝑦𝑞 = 𝐿𝑜𝑔𝑧𝑟 = 𝑛 

 

 

Conversely, if we wish to remove an overround to transform the bookmaker’s odds back to ‘true’ odds: 

 

𝑥
1
𝑛 + 𝑦

1
𝑛 + 𝑧

1
𝑛 = 𝑝 + 𝑞 + 𝑟 = 1 

 

Hence: 

 

𝐿𝑜𝑔𝑝𝑥 =  𝐿𝑜𝑔𝑞𝑦 = 𝐿𝑜𝑔𝑟𝑧 =
1

𝑛
 

 

As for the ‘odds ratio’ methodology, these equations are best solved with Excel’s Solver facility via means of 

iteration. Again my ‘true’ odds calculator will perform the task (columns N, O and P – ‘Logarithmic function’). 

For our fair book with odds 1.5, 5 and 7.5, an 8% margin applied using the logarithmic method shortens odds to 

1.45, 4.34 and 6.29 respectively. 

 

Whilst there are differences between the three methodologies, it is clear they each give rise to a greater shortening 

of longshots in comparison to an equal application of the margin across all outcomes. But just how valid are these 

methodologies? Naturally the bookmakers won’t tell us precisely how they apply their margin. One way to test 

their validity or usefulness is to analyse betting returns from these calculated ‘true’ odds. The more accurate those 

‘true’ odds are, the closer to break even or zero our net profit should be (betting them to level stakes) assuming 

good and bad luck in results cancels out. Let’s take a look at some data. 
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Testing the Margin Models 

 

To test the validity of these four margin models, I have used a sample of Pinnacle’s closing odds for the home-

draw-away football match betting market purchased from the website Indatabet.com which includes games played 

worldwide from 11th August 2007 until 4th June 2016. A total of 136,876 games make up the sample, and 

consequently 410,628 odds values. This sample size should be sufficient to ensure that neither good nor bad luck 

in the results of games relative to those odds will predominate. That is to say, if we could genuinely know a priori 

what the true chances of a football game were, whether home, draw or away, our returns would be exactly zero. 

The table below summarises the theoretical returns from blind level stakes betting on all outcomes. 

 

Model Profit over turnover (yield) 

Pinnacle’s odds -3.36% 

Equal margin distribution -0.56% 

Margin proportional to odds +0.1% 

Odds ratio -0.20% 

Logarithmic function +0.07% 

 

All models for removing Pinnacle’s margin do a reasonable job, but evidently some are better than others. Clearly 

an equal distribution of the margin falls short relative to the other three. Unsurprisingly, the likely explanation for 

this will be its failure to take into account the favourite–longshot bias. Relative to the other three models, a 

removal of the margin on longshots gives rise to ‘true’ prices which are arguably too short. Over a large sample of 

level stakes wagers, that shortfall will manifest itself as losses. Obviously favourites will be priced a little too long 

as a consequence giving rises to greater profits on those, but their influence will be disproportionately weaker and 

over a large sample the net result will be a sizeable negative deviation from zero as is witnessed. 

 

The other three models all do a much better job of getting close to an expected 0% yield. Is there any way to tell 

them apart? The time series graph below hopefully provides an answer. 
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Again it is clear that the ‘equal margin distribution’ model fails to accurately define the ‘true’ odds. There is a 

strong negative trend over time in losses (green line) for the reason identified above. A similar albeit weaker 

negative trend is also evident for the odds ratio model (red line). Arguably, some of this might be down to random 

variance – perhaps even a sample size of over 400,000 betting odds is insufficient to eliminate it completely – but 

the most likely explanation is that this model also underestimates the strength of the favourite–longshot bias. 

 

The ‘margin proportional to odds’ model (blue line) – my model used in the first version of this document and in 

my book Squares & Sharps, Suckers & Sharks – and the ‘logarithmic function’ model (purple line) yield almost 

identical time series. Yet in contrast to the ‘odds ratio’ model, they both show a slight positive trend towards 

profitability, implying a slight overestimation of the strength of the favourite–longshot bias. In other words, the 

‘true’ odds they define for longshots are slightly too high. Nevertheless, given the tiny overall deviation from zero 

it is probably fair to say they both do a pretty good job of eliminating a margin in an attempt to guess what the 

bookmaker perceived the ‘true’ odds to be.  

 

 

Using ‘True’ Odds to Find Value 

 

An obvious question now arises: if we can identify what the ‘true’ probability of the result of a football match is, 

can we use this information to identify bookmakers’ odds setting errors with a view to making a profit? Those of 

you familiar with odds comparison websites like Oddschecker, Oddsportal and Betbrain will know that 

bookmakers’ prices are not all the same. If we have used one of them – in this example Pinnacle – to identify what 

these ‘true’ probabilities are, then other brands arguably might well be offering positive expectation, that is to say 

a chance to make a profit over the long term. For example, if after removing the margin we have ‘true’ odds of 

2.00, a bookmaker with odds of 2.1 will be offering an expectation (or value) of 5% (or 2.10/2.00). 

 

Using a sample of data collected through my own service Football-Data.co.uk, I have been able to analyse the 

returns of best market prices (as published by the odds comparison Betbrain.com) when those prices exceeded the 

calculated ‘true’ odds as estimated by my four models. The sample includes games played in 22 leading European 

football league divisions from 27th July 2012 to 17th May 2017, a total of 37,303 matches and 111,909 match 

betting odds. Whilst these odds were neither closing nor opening prices, they were collected at the same time as 

those from Pinnacle, allowing us to determine the availability of expected value. The four charts which follow 

show the time series of theoretical betting returns (with level staking) from best market prices where they 

exceeded the ‘true’ odds estimated by each of the four models. 
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All four margin models allow us to find value, although clearly the ‘equal margin’ model underperforms relative 

to the other three for reasons I have already discussed. Essentially, because it fails to apply a large enough margin 

to longer prices, too many non-value bets will slip through the net. In contrast the ‘margin proportional to odds’ 

and ‘logarithmic function’ models, for sustained periods, slightly over perform relative to expectation for more or 

less the opposite reason. 

 

The next table compares the performances of the four models for increasing value thresholds. The charts above 

plot the returns from all positive-value bets. The figures shown for the row ‘Value > 2%’, for example, show the 

returns for all bets where expected value is greater than 2%. Also shown are the number of bets, the expected 

value and average odds for each sample. 

  

 Equal margin Margin proportional to odds 

Value Bets Actual Expected Avg. Odds Bets Actual Expected Avg. Odds 

>0% 37157 1.57% 2.73% 4.15 36395 2.51% 2.27% 3.31 

>1% 24691 2.47% 3.87% 4.63 24057 3.59% 3.19% 3.49 

>2% 16119 3.34% 5.16% 5.31 14967 5.71% 4.23% 3.82 

>3% 10690 3.45% 6.52% 6.13 9065 8.30% 5.39% 4.32 

>4% 7298 4.86% 7.94% 7.04 5519 12.05% 6.63% 4.95 

>5% 5107 6.77% 9.43% 8.02 3400 11.78% 7.98% 5.74 

 

 Odds ratio Logarithmic function 

Value Bets Actual Expected Avg. Odds Bets Actual Expected Avg. Odds 

>0% 36529 2.36% 2.44% 3.7 36496 2.32% 2.31% 3.36 

>1% 24073 3.19% 3.45% 4.02 24239 3.26% 3.23% 3.57 

>2% 15213 4.47% 4.61% 4.54 15169 5.36% 4.28% 3.94 

>3% 9542 5.92% 5.88% 5.27 9193 7.22% 5.46% 4.49 

>4% 6186 7.36% 7.20% 6.17 5656 11.15% 6.72% 5.2 

>5% 4038 8.84% 8.67% 7.21 3508 13.45% 8.10% 6.11 
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Naturally, as we increase the value threshold this will reduce the number of betting opportunities available but 

will increase the expected yield. That actual returns also increase roughly in line with expected returns is an 

indication that using Pinnacle’s implied ‘true’ odds to find betting value is a useful methodology. Average betting 

odds also increase with increasing value threshold since more higher-value opportunities exist at longer betting 

prices. This is simply because there is a greater variance in the ratio between best market odds and ‘true’ Pinnacle 

odds the longer they are. 

 

A number of interesting comparisons can be made from the data in the table. Firstly, as the charts demonstrated 

before, failing to take into account the favourite–longshot bias when considering the bookmaker’s margin leads to 

an underperforming model and underperforming returns relative to those expected. We can also see that average 

odds for the ‘equal margin’ model are higher than for other models. As previously noted, because the model’s 

‘true’ odds for longer prices are effectively too short (because the margin removed was too small), there are many 

more opportunities for best market prices to appear as though they offer value. For example, Sampdoria was a best 

price of 13 to beat Lazio in the Serie A match on 7th May 2017, with Pinnacle pricing them 12.5 at the same time. 

Assuming their 2.37% margin for this match was applied equally across home draw away would imply ‘true’ odds 

of 12.8. A price of 13 would thus represent a theoretical 1.6% value. Yet we have now confirmed this model is 

inappropriate as a method of applying and removing a margin. In fact it was far less likely this was a value bet; 

indeed the other models which assume a disproportionate weighting of margin towards longshots confirm this, 

with implied ‘true’ odds of 13.9, 13.3 and 13.8 for ‘margin proportional to odds’, ‘odds ratio’ and ‘logarithmic 

function’ models respectively. In fact in my sample of 111,909 odds there were 3,957 occasions when the ‘no 

favourite–longshot bias’ model suggested a value bet whilst the other three models did not. 

 

We can also note that, as the time series charts illustrated, the ‘margin proportional to odds’ and ‘logarithmic 

function’ models show an over performance relative to expectation. Some of this may simply be the result of good 

fortune. The rest of it may be due to the models’ overestimation of the strength of the favourite–longshot bias as 

we have previously observed. For example, when St Etienne played PSG on 14th May 2017, the ‘logarithmic 

function’ model considered the true price to be 9.57. Thus, the best market price of 10 offered 4.5% value. 

However, if this model applies a margin weight that it a little too strong to such a longshot, the ‘true’ value will be 

higher. Suppose, instead, the ‘true’ price was 9.34 as reflected by the ‘odds ratio model’. The ‘true’ expected 

value would then be 7.1%. If this was in fact the correct model then we would see actual returns (over a large 

sample of similar bets) of 7.1% rather than the 4.5% predicted by our ‘logarithmic function’ model. Of course, the 

opposite will be true at shorter prices, but due to the greater variance for longshots their influence will dominate 

these statistics. 

 

Taking all the information presented here into consideration it is not clear which model for applying (and 

removing) a bookmaker’s margin offers the best means of replicating the real world of the favourite–longshot 

bias. Clearly the ‘margin proportional to odds’, ‘odds ratio’ and ‘logarithmic function’ models do a much better 

job than the simple ‘equal margin’ model which fails to consider the bias at all. Mathematically, the first of these 

is considerably easier to reproduce in Excel than the other two, although as previously mentioned I have made 

available a calculator for all models. Based on actual returns the ‘odds ratio’ model appears to fit expectation best 

of all, although it’s impossible to determine if that is simply the result of chance. Perhaps the ‘logarithmic 

function’ model offers the best intuitive explanation, given that it accords with much standard economic theory of 

risk management and utility. It was Daniel Bernoulli in the 18th century with his rational choice theory who 

proposed that the subjective value of something to someone takes a logarithmic shaped utility function, a theory 

that has underpinned economics to this day. [“[T]he utility resulting from any small increase in wealth will be 

inversely proportionate to the quantity of goods previously possessed.” For more on this, see my book.] 

Essentially, bettors are less sensitive to (in other words less bothered by) price changes the longer the odds, and 

this price sensitivity may very well adopt a logarithmic function. For example, assuming such logarithmic 

sensitivity a bettor would regard the difference between 2.00 and 2.14 to be equivalent to the difference between 

10.00 and 12.59 (2.001.1 = 2.14, 10.001.1 = 12.59). 

 

 No model appears to perfectly match reality as confirmed by the general positive or negative trend in returns to 

‘true’ odds – if they were perfect there should be no trend at all discounting for the effects of chance. 

http://www.football-data.co.uk/true_odds_calculator.xlsm
http://book.12xpert.co.uk/


Nevertheless, all three models appear to offer a reasonable means of removing the bookmaker’s margin to 

determine the ‘true’ odds of a football match. They also offer a reliable method of finding value in the football 

match betting market far in excess of simply blindly betting best market prices. Those best market prices in my 

sample had an average overround of 100.6%. In other words, if we had blindly bet all possible outcomes with 

appropriate staking we would have lost about 0.6% on turnover. This method of value hunting is also superior to 

traditional arbitrage betting in the sense that it reveals far more betting opportunities. This is because we don’t 

always need an underround book to have a value price. Typically about a third of books in my sample had some 

sort of value price available to bet on. Around 60% of these value opportunities were found in books that were 

still overround at best prices. Yet there is a final question we need to address before closing: can any bookmaker 

be used – here we have used Pinnacle – to estimate the ‘true’ price of a football result? In other words, are all 

bookmakers offering ‘wise’ prices on which this ‘wisdom of the crowd’ methodology must hinge? 

 

 

Some Bookmakers are Wiser than Others 

 

I began this publication by arguing that a bookmaker’s price, like an exchange’s, represents the public expression 

of a trading process between opposing points of view which ultimately ‘discovers’ the ‘true’ probability of an 

outcome. This process is known as the ‘Wisdom of the Crowd’. But do all bookmakers really operate like this? 

Are they really so laissez-faire as to just sit back and let their customers battle amongst themselves, thereby 

arriving at collectively wise prices? 

 

Suppose bookmaker ‘A’ offered 1.50 for Arsenal to beat Real Madrid at the Bernabéu. Suppose bookmaker ‘B’ 

offered 2.00. Would we really use bookmaker ‘A’ as a means of estimating the value offered by bookmaker ‘B’ to 

be 33%? Of course we wouldn’t. Well, at least anyone who knew the slightest thing about the relative abilities of 

Arsenal and Real Madrid and the home advantage in football wouldn’t. A less obvious example: bookmaker ‘A’ 

offers 10 for Leicester to beat Manchester City, whilst bookmaker ‘B’ offers 12. All other bookmakers offer 8. 

Does 12 represent value? Does 10? It’s not inherently clear. To determine whether a bookmaker, on average, is 

offering something close to a ‘true’ price (discounting his margin) we need to analyse a much larger sample of 

betting odds. We already did this for the bookmaker Pinnacle in the earlier part of this document. It is pretty 

evident that Pinnacle’s odds offer a reasonable measure of the ‘true’ price since the ratio of best market price to 

their implied ‘true’ price is a reasonable predictor of betting value (based on actual returns) for any pricing model 

which considers the favourite–longshot bias. Let’s now repeat the exercise for another four brands: bet365, 

Betvictor, Ladbrokes and William Hill. 

 

Using my original ‘margin proportional to odds’ model to estimate the true odds, the scatter plot below correlates 

the expected return (as defined by the ratio of odds from one of the four leading UK bookmakers and Pinnacle’s 

implied ‘true’ odds) with the actual returns (to level stakes) betting those UK bookmaker odds (again using my 

sample of odds data collected through Football-Data.co.uk). Actual returns were calculated at 0.01 (1%) intervals 

in the expected return. A 5-point running average was then used to smooth the variance in the data. So for 

example the actual return for the point at 0.95 on the expected return axis is in fact the average of the actual 

returns for 0.93 through to 0.97 on the expected return axis. With such a large dataset many of these pairs are 

based on tens of thousands of odds, and can thus be considered statistically reliable. Naturally at the extremities of 

the expected returns (less than 0.8 and more than 1.1) the number of included odds diminishes substantially and 

variance in actual returns increases dramatically. I have restricted the range to that shown for visual clarity and to 

emphasise the conclusions that we can draw from this analysis. 

 



 
 

The correlation is strong and almost 1:1 for each of the four brands. Thus, where expected return is 0.9, we see 

about 0.9 for our actual return; where expected is 0.95, actual is 0.95; and so on. Although I've not shown them, 

the trend line gradients for all four bookmakers are essentially 1, and the statistical strength of the correlations (as 

measured by R-squared) is high. In other words, when a UK bookmaker offers 2.10 for a result and Pinnacle’s 

implied true price is 2.00, we hold a 5% expectation. Should we bet such prices many times, our returns are likely 

to give us a 5% profit over turnover. 

 

The next plot reverses the process. This time, the odds from the UK brands are used to estimate ‘true’ odds with 

actual returns calculated from Pinnacle’s odds. 
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There is essentially no meaningful correlation between expected return (as predicted by the fair prices of the four 

UK bookmakers) and actual return betting Pinnacle's odds. Regardless of whether Pinnacle's odds are shorter or 

longer than the estimated ‘true’ prices, it seems your return will basically be the same: a loss roughly equivalent to 

Pinnacle's margin. 

 

The conclusion here has to be this: relative to Pinnacle's home-draw-away match betting market, the four UK 

brands analysed here are not efficient and do not provide an accurate measure of 'true' outcome probabilities. So 

for example, when Ladbrokes offers a price of 2.00 implying a ‘true’ price of 2.13 whilst Pinnacle decide to offer 

2.20, this will not mean that the punter holds an expectation of 1.033 (or 2.20/2.13). Rather, it will mean that the 

implied true odds are something like 2.25 and you can expect to make a loss over the long term betting these 

propositions with Pinnacle. Relative to Pinnacle, Ladbrokes and the other UK brands, on average, fail to offer any 

meaningful information about the ‘true’ odds of a football result. 

 

There are two possible explanations to account for these findings. The first is that my model for calculating fair 

prices lacks reliability, and the greater the margin applied by the bookmaker, the greater the inaccuracy. Pinnacle, 

of course, have the smallest margins. The average in this sample of matches was 2.7%. This compares to 4.1%, 

5.5%, 7.4% and 7.8% for Betvictor, bet365, William Hill and Ladbrokes respectively. Perhaps the ‘margin 

proportional to odds’ model I used here for estimating the ‘true’ prices implied the by the four UK bookmakers 

just doesn't work as well when margins are larger. However, given that theoretical level stakes returns from blind 

betting all ‘true’ odds in this 5-year sample are 99.88%, 100.13%, 99.80%, 99.59% and 100.00% for Pinnacle, 

bet365, Ladbrokes, William Hill and Betvictor respectively, this explanation doesn’t seem credible. Furthermore, 

I have tested the correlation between expected and actual returns without removing the margin at all and broadly 

the same patterns exist. Finally, arbitrage bettors who use Pinnacle will know that it’s typically the other 

bookmaker who sits on the value side from the bettor’s perspective. It's obviously no surprise, then, that Pinnacle 

are the only bookmaker to openly welcome arbitrage bettors, knowing that, unlike the other brands, they are not, 

on average, offering positive expectation by doing so. 

 

Alternatively, we might speculate that some bookmakers are intentionally shifting prices away from market 

efficiency in favour of pursuing the interests of their business models. Pinnacle’s pricing model as much as 

possible utilises crowd wisdom and accepts sharp players to tighten its lines. Other bookmakers from Europe and 

the UK prefer to encourage a steady flow of squares via promotional offers, a wider variety of low-liquidity 

markets and the regular availability of best market prices (if not the lowest margins). With respect to the last of 

those, a casual perusal of any odds comparison will reveal numerous matches where bookmakers are significantly 

out of line with Pinnacle’s market, and in the extreme offering loss-leading value to the player. So for example, 

Pinnacle offered a price of 1.22 for Barcelona to beat Espanyol on the 2nd January 2016 that was longer than 

Betvictor's implied ‘true’ price of 1.20. Yet, conceivably, Betvictor artificially shortened Barcelona's price relative 

to what they knew was fair with a view to being best-in-market for Espanyol, at 19. This price, and not Pinnacle's 

price for Barcelona, would then represent the value, based on Pinnacle's implied ‘true’ odds of 16.8. 

 

Whilst it is pure conjecture that brands manipulate their markets like this, the regular restriction and banning of 

customers who regularly exploit best market loss-leading value would be a pattern consistent with such a 

conclusion. If bookmakers know they are intentionally offering loss-leading value to customers it's not going to 

prove very cost effective for them if they allow those customers to continually exploit such value while the other 

parts of the book are attracting little or no custom at all. Of course, Pinnacle, with a much more passive price 

management system that reflects customer turnover will not suffer the same problem. The consequence is that 

Pinnacle, relative to other brands, will offer more efficient and accurate markets as a reflection of ‘true’ outcome 

probabilities. 

 

This is not to say that other brands’ markets are completely inefficient, nor that Pinnacle is wholly efficient. 

Rather, this analysis is simply illustrating that Pinnacle is relatively more efficient than the rest. We can also 

compare the UK brands with each other, to establish some sort of efficiency hierarchy. The following four plots of 

actual returns against expectation reveal that Betvictor and bet365 are more efficient than Ladbrokes and William 

Hill, and therefore more useful at estimating ‘true’ prices (relatively speaking). 
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Wrapping Up 

 

Expanding on my original discussion of the ‘Wisdom of the Crowd’ this updated publication has attempted to 

achieve two goals: 1) further investigate how bookmakers might apply their margin to a football match betting 

market (home-draw-away) and how, subsequently, we can remove that margin to find ‘true’ odds; 2) use those 

‘true’ odds and the assumption that they are wise (efficient or accurate) to find betting value and make a profit. 

Regarding the first, I’ve proposed four models which describe the application (and removal) of a bookmaker’s 

margin. Three of these take into account the well known phenomenon that is the favourite–longshot bias where 

odds on longshots are shortened more than they are on favourites. All three of them do a considerably better job of 

replicating what bookmakers are most likely doing, and consequently of reproducing their implied ‘true’ odds 
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than a simple model which ignores the bias and assumes the margin is spread equally across home, draw and away 

odds. 

 

When I wrote the original version of this document in August 2015 I used only one model – the ‘margin 

proportional to odds’ model. Whilst this model was formulated purely from conjecture it arguably does as good a 

job as two new models introduced in this piece of work – the ‘odds ratio’ model and the ‘logarithmic function’ 

model, which may very well have a superior rationale underpinning them. For this reason and for the sake of 

simplicity I will continue to use my existing model for estimating the ‘true’ odds of a football result when issuing 

my bet suggestions for my ‘Wisdom of the Crowd’ betting system on Football-Data.co.uk. Followers are free to 

experiment with the other two models at their leisure by means of the ‘true’ odds calculator I have made 

available. 

 

This work has also made clear that the stand out bookmaker for assessing ‘true’ odds is Pinnacle. When you see 

their odds you can be confident, relative to other bookmaker brands, that what you see is a real reflection of the 

‘true’ probability of a football match result. More than any other brand their model relies on encouraging turnover 

rather than large customer numbers, the acceptance of sharp players for the wisest possible market, and the 

management of betting odds that in many ways resembles what takes place at a betting exchange. Consequently 

their football betting market will be the wisest and most accurate. Odds published by other bookmakers, by 

contrast, do not necessarily reflect those ‘true’ probabilities. Rather, they may at times reflect other motivations of 

the bookmaker, most specifically the advertising of best prices (and sometime loss-leading prices too) to attract 

new customers and to create favourable publicity. Consequently using them to estimate ‘true’ odds and find value 

may not be appropriate.  

 

Naturally, there are a couple of caveats with this approach to finding value via this ‘Wisdom of the Crowd’ 

approach. Firstly, given the relatively modest yields of perhaps a few per cent and at fairly long average odds one 

should reasonably expect to suffer fairly long periods of treading water, or worse still, losing, lasting hundreds and 

perhaps thousands of bets. Of course, the same is true, to a greater or lesser extent, for all and any betting one 

engages in. Secondly, it is to be expected that the sort of bookmaker who will offer betting prices in excess of 

Pinnacle’s implied ‘true’ odds will also be the sort of bookmaker who won’t like a customer consistently 

exploiting such generosity. As already mentioned, this is usually offered to attract new customers or to advertise 

the impression that the brand offers good value. If customers repeatedly take advantage of those superior prices 

they can often expect to have their betting activity curtailed. Advising how a punter can avoid detection in this 

respect is beyond the scope of this document, although two important things to consider are ways of hiding your 

IP address and adopting betting patterns that make you look more like a square. There are a number of websites 

that offer some guidance in this respect [Daily25, Sports Arbitrage Guide, Betting Expert, Betting Systems that 

Work, Kick Off Profits, Punter2Pro, Gamble Geek]. Nevertheless, the information published in this document has 

at least identified that a ‘wisdom-of-the-crowd’ approach can identify where bookmakers have made mistakes, 

and that technically at least it should be possible to exploit them. 

 

Good luck in trying. 

 

Joseph Buchdahl 

http://www.football-data.co.uk/wisdom_of_crowd_bets
http://www.football-data.co.uk/true_odds_calculator.xlsm
http://www.daily25.com/bookmakers-track-every-move-industry-insider/
http://sportsarbitrageguide.com/avoiding_bookmaker_limits.php
http://www.bettingexpert.com/how-to/bookmakers/avoid-betting-account-restrictions
http://www.laybackandgetrich.com/8-ways-to-stop-bookies-limiting-your-account/
http://www.laybackandgetrich.com/8-ways-to-stop-bookies-limiting-your-account/
http://www.kickoffprofits.com/2015/08/11/how-to-prevent-getting-limited-or-banned-by-the-bookies-13-tips-to-keep-your-bookmakers-accounts-usable/
http://punter2pro.com/prevent-betting-accounts-restricted-closed/
http://gamblegeek.com/2016/05/31/tips-to-stop-bookies-limiting-your-betting-account/

